1,895 research outputs found

    Adaptive Partitioning for Large-Scale Dynamic Graphs

    Get PDF
    Abstract—In the last years, large-scale graph processing has gained increasing attention, with most recent systems placing particular emphasis on latency. One possible technique to improve runtime performance in a distributed graph processing system is to reduce network communication. The most notable way to achieve this goal is to partition the graph by minimizing the num-ber of edges that connect vertices assigned to different machines, while keeping the load balanced. However, real-world graphs are highly dynamic, with vertices and edges being constantly added and removed. Carefully updating the partitioning of the graph to reflect these changes is necessary to avoid the introduction of an extensive number of cut edges, which would gradually worsen computation performance. In this paper we show that performance degradation in dynamic graph processing systems can be avoided by adapting continuously the graph partitions as the graph changes. We present a novel highly scalable adaptive partitioning strategy, and show a number of refinements that make it work under the constraints of a large-scale distributed system. The partitioning strategy is based on iterative vertex migrations, relying only on local information. We have implemented the technique in a graph processing system, and we show through three real-world scenarios how adapting graph partitioning reduces execution time by over 50 % when compared to commonly used hash-partitioning. I

    Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information

    Get PDF
    Local field potentials (LFPs) reflect subthreshold integrative processes that complement spike train measures. However, little is yet known about the differences between how LFPs and spikes encode rich naturalistic sensory stimuli. We addressed this question by recording LFPs and spikes from the primary visual cortex of anesthetized macaques while presenting a color movie.Wethen determined how the power of LFPs and spikes at different frequencies represents the visual features in the movie.Wefound that the most informative LFP frequency ranges were 1– 8 and 60 –100 Hz. LFPs in the range of 12– 40 Hz carried little information about the stimulus, and may primarily reflect neuromodulatory inputs. Spike power was informative only at frequencies <12 Hz. We further quantified “signal correlations” (correlations in the trial-averaged power response to different stimuli) and “noise correlations” (trial-by-trial correlations in the fluctuations around the average) of LFPs and spikes recorded from the same electrode. We found positive signal correlation between high-gamma LFPs (60 –100 Hz) and spikes, as well as strong positive signal correlation within high-gamma LFPs, suggesting that high-gamma LFPs and spikes are generated within the same network. LFPs<24 Hz shared strong positive noise correlations, indicating that they are influenced by a common source, such as a diffuse neuromodulatory input. LFPs<40 Hz showed very little signal and noise correlations with LFPs>40Hzand with spikes, suggesting that low-frequency LFPs reflect neural processes that in natural conditions are fully decoupled from those giving rise to spikes and to high-gamma LFPs

    xDGP: A Dynamic Graph Processing System with Adaptive Partitioning

    Get PDF
    13 pagesMany real-world systems, such as social networks, rely on mining efficiently large graphs, with hundreds of millions of vertices and edges. This volume of information requires partitioning the graph across multiple nodes in a distributed system. This has a deep effect on performance, as traversing edges cut between partitions incurs a significant performance penalty due to the cost of communication. Thus, several systems in the literature have attempted to improve computational performance by enhancing graph partitioning, but they do not support another characteristic of real-world graphs: graphs are inherently dynamic, their topology evolves continuously, and subsequently the optimum partitioning also changes over time. In this work, we present the first system that dynamically repartitions massive graphs to adapt to structural changes. The system optimises graph partitioning to prevent performance degradation without using data replication. The system adopts an iterative vertex migration algorithm that relies on local information only, making complex coordination unnecessary. We show how the improvement in graph partitioning reduces execution time by over 50%, while adapting the partitioning to a large number of changes to the graph in three real-world scenarios

    Region and volume dependencies in spectral linewidth assessed by 1H 2D chemical shift imaging in the monkey brain at 7T

    Get PDF
    High magnetic fields increase the sensitivity and spectral dispersion in MR spectroscopy. In contrast, spectral peaks are broadened in vivo at higher field strength due to stronger susceptibility-induced effects. Strategies to minimize the spectral linewidth are therefore of critical importance. In the present study, 1H 2D chemical shift imaging (CSI) at short echo time was performed in the macaque monkey brain at 7 T. Dependencies of spectral linewidth on the CSI voxel size were determined by data reconstruction at different spatial resolution. An overall linewidth narrowing at increased spatial resolution is shown and regional differences are demonstrated

    Elucidation of molecular kinetic schemes from macroscopic traces using system identification

    Get PDF
    Overall cellular responses to biologically-relevant stimuli are mediated by networks of simpler lower-level processes. Although information about some of these processes can now be obtained by visualizing and recording events at the molecular level, this is still possible only in especially favorable cases. Therefore the development of methods to extract the dynamics and relationships between the different lower-level (microscopic) processes from the overall (macroscopic) response remains a crucial challenge in the understanding of many aspects of physiology. Here we have devised a hybrid computational-analytical method to accomplish this task, the SYStems-based MOLecular kinetic scheme Extractor (SYSMOLE). SYSMOLE utilizes system-identification input-output analysis to obtain a transfer function between the stimulus and the overall cellular response in the Laplace-transformed domain. It then derives a Markov-chain state molecular kinetic scheme uniquely associated with the transfer function by means of a classification procedure and an analytical step that imposes general biological constraints. We first tested SYSMOLE with synthetic data and evaluated its performance in terms of its rate of convergence to the correct molecular kinetic scheme and its robustness to noise. We then examined its performance on real experimental traces by analyzing macroscopic calcium-current traces elicited by membrane depolarization. SYSMOLE derived the correct, previously known molecular kinetic scheme describing the activation and inactivation of the underlying calcium channels and correctly identified the accepted mechanism of action of nifedipine, a calcium-channel blocker clinically used in patients with cardiovascular disease. Finally, we applied SYSMOLE to study the pharmacology of a new class of glutamate antipsychotic drugs and their crosstalk mechanism through a heteromeric complex of G protein-coupled receptors. Our results indicate that our methodology can be successfully applied to accurately derive molecular kinetic schemes from experimental macroscopic traces, and we anticipate that it may be useful in the study of a wide variety of biological systems

    Dopamine is signaled by mid-frequency oscillations and boosts output-layers visual information in visual cortex

    Get PDF
    Neural oscillations are ubiquitously observed in cortical activity, and are widely believed to be crucial for mediating transmission of information across the cortex. Yet, the neural phenomena contributing to each oscillation band, and their effect on information coding and transmission, are largely unknown. Here, we investigated whether individual frequency bands specifically reflect changes in the concentrations of dopamine, an important neuromodulator, and how dopamine affects oscillatory information processing. We recorded the local field potential (LFP) at different depths of primary visual cortex (V1) in anesthetized monkeys (Macaca mulatta) during spontaneous activity and during visual stimulation with Hollywood movie clips while pharmacologically mimicking dopaminergic neuromodulation by systemic injection of L-DOPA (a metabolic precursor of dopamine). We found that dopaminergic neuromodulation had marked effects on both spontaneous and movie-evoked neural activity. During spontaneous activity, dopaminergic neuromodulation increased the power of the LFP specifically in the [19–38 Hz] band, suggesting that the power of endogenous visual cortex oscillations in this band can be used as a robust marker of dopaminergic neuromodulation. Moreover, dopamine increased visual information encoding over all frequencies during movie stimulation. The information increase due to dopamine was prominent in the supragranular layers of cortex that project to higher cortical areas and in the gamma [50–100 Hz] band that has been previously implicated in mediating feedforward information transfer. These results thus individuate new neural mechanisms by which dopamine may promote the readout of relevant sensory information by strengthening the transmission of information from primary to higher areas

    Cholinergic Control of Visual Categorization in Macaques

    Get PDF
    Acetylcholine (ACh) is a neurotransmitter acting via muscarinic and nicotinic receptors that is implicated in several cognitive functions and impairments, such as Alzheimer’s disease. It is believed to especially affect the acquisition of new information, which is particularly important when behavior needs to be adapted to new situations and to novel sensory events. Categorization, the process of assigning stimuli to a category, is a cognitive function that also involves information acquisition. The role of ACh on categorization has not been previously studied. We have examined the effects of scopolamine, an antagonist of muscarinic ACh receptors, on visual categorization in macaque monkeys using familiar and novel stimuli. When the peripheral effects of scopolamine on the parasympathetic nervous system were controlled for, categorization performance was disrupted following systemic injections of scopolamine. This impairment was observed only when the stimuli that needed to be categorized had not been seen before. In other words, the monkeys were not impaired by the central action of scopolamine in categorizing a set of familiar stimuli (stimuli which they had categorized successfully in previous sessions). Categorization performance also deteriorated as the stimulus became less salient by an increase in the level of visual noise. However, scopolamine did not cause additional performance disruptions for difficult categorization judgments at lower coherence levels. Scopolamine, therefore, specifically affects the assignment of new exemplars to established cognitive categories, presumably by impairing the processing of novel information. Since we did not find an effect of scopolamine in the categorization of familiar stimuli, scopolamine had no significant central action on other cognitive functions such as perception, attention, memory, or executive control within the context of our categorization task

    Ready ... Go: Amplitude of the fMRI Signal Encodes Expectation of Cue Arrival Time

    Get PDF
    What happens when the brain awaits a signal of uncertain arrival time, as when a sprinter waits for the starting pistol? And what happens just after the starting pistol fires? Using functional magnetic resonance imaging (fMRI), we have discovered a novel correlate of temporal expectations in several brain regions, most prominently in the supplementary motor area (SMA). Contrary to expectations, we found little fMRI activity during the waiting period; however, a large signal appears after the “go” signal, the amplitude of which reflects learned expectations about the distribution of possible waiting times. Specifically, the amplitude of the fMRI signal appears to encode a cumulative conditional probability, also known as the cumulative hazard function. The fMRI signal loses its dependence on waiting time in a “countdown” condition in which the arrival time of the go cue is known in advance, suggesting that the signal encodes temporal probabilities rather than simply elapsed time. The dependence of the signal on temporal expectation is present in “no-go” conditions, demonstrating that the effect is not a consequence of motor output. Finally, the encoding is not dependent on modality, operating in the same manner with auditory or visual signals. This finding extends our understanding of the relationship between temporal expectancy and measurable neural signals

    Does the information in the phase of low frequency LFP reflect the low frequency envelope of local spike rates?

    Get PDF
    Recently, it has been shown that when the timing of spikes is measured relative to the phase of the cortical local field potentials (LFP), spikes can carry substantial more information about an external stimulus [1]. Experimental studies in sensory cortices of macaque have shown that the extra information obtained with such phase-of-firing codes above that in the firing rate alone ranges from 55 in primary visual cortex [1] to more than 100 in primary auditory cortex [2]. Here, we use a mathematical model that relates local spike trains and the resulting LFP, to explain the emergence of the phase-of-firing codes in cortex. The model is based on the one proposed in [3] and incorporates two types of integration over the spiking activity: i) a time convolution that results from the filtering properties of neural structures [4], which embeds history effects in LFP from past spiking activity, and ii) an integration step over the activity of neurons in the neighbourhood of the measuring electrode. When the spikes recorded from macaque primary visual cortex were used to synthesize the LFP, the model could reproduce the phase-of-firing information found using the real LFP, as shown in Figure 1. This suggests that an important component of phase-of-firing information originates from the surrounding neural population and past spiking activity. The next question that arises is what is the relative contribution of the neuron population size and the length of the firing rate history embedded in the LFP. We are currently investigating this question by parametrically varying both the population size and time integration ranges in generating the synthetic LFP

    Local field potential phase and spike timing convey information about different visual features in primary visual cortex

    Get PDF
    The natural visual environment is characterized by both “what/where” aspects (image features such as contrast or orientation which are defined by the relationship between visual signals simultaneously presented at different points in space) and “when” aspects, describing the temporal variations of the image features. Both “when” and “what/where” information is necessary to describe and understand the natural visual environment, and to take appropriate behavioral decisions. While “where” can be considered embedded as retinotopy, it is likely that localized neural populations in the visual cortex keep a simultaneous representation of both “what” and “when” aspects of the visual stimuli. However, little is yet known about how the spike trains of neurons in primary visual cortex encode both sources of information. The traditional hypothesis in systems neuroscience is that sensory variables are represented by a rate code, i.e. all sensory information is encoded by the number of spikes emitted over relatively long time windows. Although the relevance of rate in encoding static features is well established, this code can be inherently ambiguous in changing environments [1] and it is unlikely that this code is rich enough to represent simultaneously different types of information. Therefore here we explore the hypothesis that the timing of spikes is a crucial variable in representing both “what” and “when” aspects of the natural visual environment. To address these issues, we recorded single unit activity and LFPs in primary visual cortex of opiate anaesthetized macaques during the binocular presentation of naturalistic color movies. By means of computational analysis, we extracted several image features (color, orientation, luminance, space and time contrast, motion) from the receptive fields of each single neuron. We then considered two different spike timing codes previously studied in both the auditory [2] and the visual cortex [3]. In the first code, which we call spike patterns code, sequences of spike times from single neurons are measured (with a resolution of the order of 10 ms) with respect to the time course of the external stimulus. In the second code, which we call phase of firing code, spikes are measured with respect to the phase of the concurrent low frequency LFPs recorded from the same electrode as the spikes. We then used these data to investigate systematically which types of neural codes carry information about the static features of the image and which neural codes carry information about the time course of these features. We found that both “when” and “what” aspects are encoded simultaneously by spike times of visual cortical neurons. However, “what” and “when” are encoded by two different neural information streams; “what” aspects are encoded (on a fine scale of few ms) by spike patterns, and “when” stimulus aspects are encoded by the phase of firing (on a coarse scale of hundreds of ms)
    corecore